3.687 \(\int \frac {(a+b x^3)^{2/3}}{x^3 (c+d x^3)} \, dx\)

Optimal. Leaf size=169 \[ \frac {(b c-a d)^{2/3} \log \left (c+d x^3\right )}{6 c^{5/3}}-\frac {(b c-a d)^{2/3} \log \left (\frac {x \sqrt [3]{b c-a d}}{\sqrt [3]{c}}-\sqrt [3]{a+b x^3}\right )}{2 c^{5/3}}+\frac {(b c-a d)^{2/3} \tan ^{-1}\left (\frac {\frac {2 x \sqrt [3]{b c-a d}}{\sqrt [3]{c} \sqrt [3]{a+b x^3}}+1}{\sqrt {3}}\right )}{\sqrt {3} c^{5/3}}-\frac {\left (a+b x^3\right )^{2/3}}{2 c x^2} \]

[Out]

-1/2*(b*x^3+a)^(2/3)/c/x^2+1/6*(-a*d+b*c)^(2/3)*ln(d*x^3+c)/c^(5/3)-1/2*(-a*d+b*c)^(2/3)*ln((-a*d+b*c)^(1/3)*x
/c^(1/3)-(b*x^3+a)^(1/3))/c^(5/3)+1/3*(-a*d+b*c)^(2/3)*arctan(1/3*(1+2*(-a*d+b*c)^(1/3)*x/c^(1/3)/(b*x^3+a)^(1
/3))*3^(1/2))/c^(5/3)*3^(1/2)

________________________________________________________________________________________

Rubi [C]  time = 0.06, antiderivative size = 89, normalized size of antiderivative = 0.53, number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {511, 510} \[ -\frac {\left (a+b x^3\right )^{2/3} \left (\frac {d x^3}{c}+1\right )^{2/3} \, _2F_1\left (-\frac {2}{3},-\frac {2}{3};\frac {1}{3};-\frac {c \left (\frac {b x^3}{a}-\frac {d x^3}{c}\right )}{d x^3+c}\right )}{2 c x^2 \left (\frac {b x^3}{a}+1\right )^{2/3}} \]

Warning: Unable to verify antiderivative.

[In]

Int[(a + b*x^3)^(2/3)/(x^3*(c + d*x^3)),x]

[Out]

-((a + b*x^3)^(2/3)*(1 + (d*x^3)/c)^(2/3)*Hypergeometric2F1[-2/3, -2/3, 1/3, -((c*((b*x^3)/a - (d*x^3)/c))/(c
+ d*x^3))])/(2*c*x^2*(1 + (b*x^3)/a)^(2/3))

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 511

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[(a^IntPa
rt[p]*(a + b*x^n)^FracPart[p])/(1 + (b*x^n)/a)^FracPart[p], Int[(e*x)^m*(1 + (b*x^n)/a)^p*(c + d*x^n)^q, x], x
] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] &&  !(IntegerQ[
p] || GtQ[a, 0])

Rubi steps

\begin {align*} \int \frac {\left (a+b x^3\right )^{2/3}}{x^3 \left (c+d x^3\right )} \, dx &=\frac {\left (a+b x^3\right )^{2/3} \int \frac {\left (1+\frac {b x^3}{a}\right )^{2/3}}{x^3 \left (c+d x^3\right )} \, dx}{\left (1+\frac {b x^3}{a}\right )^{2/3}}\\ &=-\frac {\left (a+b x^3\right )^{2/3} \left (1+\frac {d x^3}{c}\right )^{2/3} \, _2F_1\left (-\frac {2}{3},-\frac {2}{3};\frac {1}{3};-\frac {c \left (\frac {b x^3}{a}-\frac {d x^3}{c}\right )}{c+d x^3}\right )}{2 c x^2 \left (1+\frac {b x^3}{a}\right )^{2/3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.05, size = 83, normalized size = 0.49 \[ -\frac {\left (a+b x^3\right )^{2/3} \left (\frac {d x^3}{c}+1\right )^{2/3} \, _2F_1\left (-\frac {2}{3},-\frac {2}{3};\frac {1}{3};\frac {(a d-b c) x^3}{a \left (d x^3+c\right )}\right )}{2 c x^2 \left (\frac {b x^3}{a}+1\right )^{2/3}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*x^3)^(2/3)/(x^3*(c + d*x^3)),x]

[Out]

-1/2*((a + b*x^3)^(2/3)*(1 + (d*x^3)/c)^(2/3)*Hypergeometric2F1[-2/3, -2/3, 1/3, ((-(b*c) + a*d)*x^3)/(a*(c +
d*x^3))])/(c*x^2*(1 + (b*x^3)/a)^(2/3))

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(2/3)/x^3/(d*x^3+c),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b x^{3} + a\right )}^{\frac {2}{3}}}{{\left (d x^{3} + c\right )} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(2/3)/x^3/(d*x^3+c),x, algorithm="giac")

[Out]

integrate((b*x^3 + a)^(2/3)/((d*x^3 + c)*x^3), x)

________________________________________________________________________________________

maple [F]  time = 0.61, size = 0, normalized size = 0.00 \[ \int \frac {\left (b \,x^{3}+a \right )^{\frac {2}{3}}}{\left (d \,x^{3}+c \right ) x^{3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^3+a)^(2/3)/x^3/(d*x^3+c),x)

[Out]

int((b*x^3+a)^(2/3)/x^3/(d*x^3+c),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b x^{3} + a\right )}^{\frac {2}{3}}}{{\left (d x^{3} + c\right )} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(2/3)/x^3/(d*x^3+c),x, algorithm="maxima")

[Out]

integrate((b*x^3 + a)^(2/3)/((d*x^3 + c)*x^3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (b\,x^3+a\right )}^{2/3}}{x^3\,\left (d\,x^3+c\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^3)^(2/3)/(x^3*(c + d*x^3)),x)

[Out]

int((a + b*x^3)^(2/3)/(x^3*(c + d*x^3)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b x^{3}\right )^{\frac {2}{3}}}{x^{3} \left (c + d x^{3}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**3+a)**(2/3)/x**3/(d*x**3+c),x)

[Out]

Integral((a + b*x**3)**(2/3)/(x**3*(c + d*x**3)), x)

________________________________________________________________________________________